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We present a material frame formulation analogous to the spatial frame formulation devel-
oped by Hardy, whereby expressions for continuum mechanical variables such as stress
and heat flux are derived from atomic-scale quantities intrinsic to molecular simulation.
This formulation is ideally suited for developing an atomistic-to-continuum correspon-
dence for solid mechanics problems. We derive expressions for the first Piola–Kirchhoff
(P–K) stress tensor and the material frame heat flux vector directly from the momentum
and energy balances using localization functions in a reference configuration. The resulting
P–K stress tensor, unlike the Cauchy expression, has no explicit kinetic contribution. The
referential heat flux vector likewise lacks the kinetic contribution appearing in its spatial
frame counterpart. Using a proof for a special case and molecular dynamics simulations,
we show that our P–K stress expression nonetheless represents a full measure of stress that
is consistent with both the system virial and the Cauchy stress expression developed by
Hardy. We also present an expanded formulation to define continuum variables from
micromorphic continuum theory, which is suitable for the analysis of materials repre-
sented by directional bonding at the atomic scale.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Continuum theory has been used for decades to analyze and predict the mechanics of materials and structures. However,
as technologies shrink to the nanometer range, quantities such as stress and strain become ill-defined and the application of
continuum mechanics in nanomechanical frameworks becomes suspect. This brings into question whether the traditional
design tools used for manufacturing can be applied to micro or nano electro-mechanical systems. And while atomic-scale
modeling and simulation methods, e.g. molecular dynamics, have provided a wealth of information for such systems, the
use of such methods has not been standardized. Certainly, the use of continuum mechanics methods would be invaluable
provided that clear connections between nanoscale mechanics and engineering-scale analysis can be made.

The development of definitions for continuum variables that are calculable within an atomic system has a long and rich
history. In the late 19th century, Clausius [1] and Maxwell [2,3] simultaneously developed the virial theorem (VT) to define
the stress applied to the surface of a fixed volume containing interacting particles and a non-zero temperature. Since these
initial efforts, there have been many subsequent works to improve on this definition [4–19], most of which have occurred in
the last quarter of the 20th century and have continued into the 21st century. The articles cited here have addressed impor-
tant issues such as the consistency of stress expressions with the mechanical concept of a force acting on a unit area, the
validity of an atomic stress based on the VT, and the role of both spatial and time averaging. For brevity, we refer the reader
to the discussions in [16,19] for more information.
. All rights reserved.
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Among these efforts is the notable work by Hardy and colleagues [8,20,21]. Hardy’s formalism uses a finite-valued and
finite-ranged localization function in lieu of the Dirac delta function [4] to establish a self-consistent manner of distributing
discrete atomic contributions to thermomechanical fields. While the range and form of the localization function can be se-
lected arbitrarily, the resulting expression for, say, the stress has a certain amount of regularity with varying sized support
regions given reasonable choices for the form. Hardy’s original formulation is based on the Eulerian or spatial configuration
where localization volumes are essentially control volumes fixed in space that matter occupies at a particular time. Hence,
Hardy’s expressions for stress and heat flux contain both potential (based on derivatives of potential energy) and kinetic
(based on the flux of momentum or energy through the localization volume) terms. The validity of kinetic contributions
to stress has been an issue of some contention, and has been examined in detail by such authors as Zhou [17] and Murdoch
[18].

An alternative approach that obviates the separation of potential and kinetic contributions to stress is to construct a sim-
ilar formulation to Hardy’s in the Lagrangian or material frame. In the material frame, an appropriate stress measure is the
1st Piola–Kirchhoff tensor P, which represents the amount of current force exerted on a unit area as measured in the refer-
ence configuration. Expressions to calculate P have been developed by Andia et al. [22–25]; however, their definition is con-
structed as a system average, i.e. a single value representative of the average stress state for a cell with periodic boundary
conditions. In addition, Andia et al. make the distinction between internal and external forces, separating the interactions
between atoms within the cell and the interactions between atoms with ‘‘ghost” atoms located across the periodic bound-
aries. This distinction is not made in many of the approaches mentioned earlier, and application of this concept is not
straightforward for the localization volume framework of Hardy.

In this paper, we present a material frame formulation analogous to the one developed by Hardy for the spatial frame.
This formulation relies on a mapping from reference to current positions of material points. It is ideally suited for developing
an atomistic-to-continuum correspondence for solid mechanics problems as it contains atom-to-material point mapping
functions that need only be calculated once for a given simulation. Also, it easily links to concepts and variables used within
continuum constitutive models such as the deformation gradient. In Section 2, we derive an expression for P–K stress and the
referential heat flux directly from the momentum and energy balances using localization functions in a zero temperature
reference configuration. Neither the P–K stress nor the referential heat flux vector have explicit dependence on kinetic en-
ergy. Nevertheless, we demonstrate that the derived P–K stress is consistent with the Hardy expression for Cauchy stress
using a proof based on a system average in Section 2.4.2, as well as pointing out the obvious connection between the con-
tinuum versions of these two quantities which are derived directly from the appropriate balance laws. Furthermore, we em-
ploy molecular dynamics simulations discussed in Section 3 to verify that our stress expression is consistent even for
systems where the kinetic portion of the Cauchy stress is a significant fraction of the total value. As a further extension of
this work, we also present an expanded formulation to define continuum variables from micromorphic continuum theory
in Section 4. This extension relies crucially on the Lagrangian framework we develop and shows that our formulation is use-
ful for the analysis of materials represented by directional bonding at the atomic scale.

2. Formulation for standard continuum mechanics

Before we begin our formulation, we define the notation for spatial and temporal derivatives and operators used in this
paper. Letting the notations ~g and ĝ refer to g as a function of the spatial coordinate x or the material coordinate X, respec-
tively, we can write g ¼ ~gðx; tÞ ¼ ~gðx̂ðX; tÞ; tÞ ¼ ĝðX; tÞ, for any scalar, vector or tensor function g. With this notation we can
define the spatial frame and material frame divergences to be rx � ~g and rX � ĝ, and likewise define the spatial frame and
material frame gradients asrx~g andrXĝ. In the following, this explicit notation will not be used; rather, it will be clear from
context whether the field referred to is a function of the spatial configuration or the material configuration, as is customary
in the continuum mechanics literature, e.g. [26,27]. Also, it is understood that if gðX; tÞ is a tensor of ‘‘mixed” character, e.g.
the 1st Piola–Kirchhoff stress tensor, then the expressionrX � g is defined to be consistent with the index notation giJ;J , where
lower-case Roman letters denote spatial frame indices and upper-case Roman letters denote material frame indices, with
both types of subscripts referring to the Cartesian coordinate components of vector or tensor quantities. Regarding deriva-
tives in time, we express the partial time derivative of ~gðx; tÞ as @g

@t �
@g
@t jx and the full or material time derivative as dg

dt �
@g
@t jX.

As usual, these two time derivatives are related through the expression dg
dt ¼

@g
@t þrxg � v.

2.1. Balance laws

We begin by modifying Hardy’s formulation for the Lagrangian or material frame. Hardy’s work uses the balance equa-
tions for mass, linear momentum and energy. These are expressed in a spatial configuration as follows:
@q
@t
þrx � ðqvÞ ¼ 0 ð1Þ

@ðqvÞ
@t

¼ rx � ðr� qv � vÞ þ qb ð2Þ

@ðqeÞ
@t
¼ rx � ðr � v � qev � qÞ þ qb � v þ qh ð3Þ
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These expressions can be manipulated to use the full or material time derivative d
dt instead of the partial time derivative @

@t:
1 Wh
potenti
dq
dt
þ qrx � v ¼ 0 ð4Þ

q
dv
dt
¼ rx �rþ qb ð5Þ

q
d�
dt
¼ r : rxv �rx � qþ qh ð6Þ
In Eqs. (1)–(6) q is mass density, v is velocity, r is Cauchy stress, b is body force per unit mass, e is total energy per unit mass,
� is internal energy per unit mass (total energy contains contributions from both internal energy and continuum kinetic en-
ergy: e ¼ �þ 1

2 v2), q is heat flux and h is energy generation per unit mass. Eqs. (1)–(3) are commonly used in fluid dynamics
analyses whereas Eqs. (4)–(6) are typically used to solve solid mechanics problems. Nevertheless, the variables used within
all of these equations are defined with respect to the current/spatial configuration, i.e. variables are functions of spatial coor-
dinate x and time t.

These variables and equations can also be expressed with respect to the reference/material configuration:
dq0

dt
¼ 0 ð7Þ

q0
dv
dt
¼ rX � Pþ q0b ð8Þ

q0
d�
dt
¼ P :

dF
dt
�rX � Q þ q0h ð9Þ
In these equations, q0 is reference mass density (mass per unit reference volume), P is 1st Piola–Kirchhoff stress (force per
unit reference area), F is the deformation gradient ð@x

@XÞ, and Q is the reference heat flux (energy per unit reference area per
unit time). These variables in Eqs. (7)–(9) are all functions of the reference coordinate X and time t, with the material time
derivative retaining its earlier definition, dgðX;tÞ

dt ¼
@g
@t jX. Although different in form and functional dependencies, all three sets

of Eqs. (1)–(9), represent the same fundamental balance laws and are derivable from one another as shown in standard texts
on continuum mechanics, e.g. [26,27].

2.2. Densities and localization

We consider a body to be a system of N atoms which are interacting with each other through some inter-atomic potential
energy formulation. Each atom a is characterized by its mass ma, its position in the reference configuration Xa, its position in
the current configuration xaðtÞ, its velocity vaðtÞ ¼ dxa

dt , and a displacement uaðtÞ � xaðtÞ � Xa. Herein, any superscripted, low-
er-case Greek letter will be used to refer to a particular atom.

In Hardy’s formulation, two views of the material system are considered. One perspective is the continuum, where quan-
tities are point-wise functions of time and position. These quantities include mass density q0ðX; tÞ, momentum density
p0ðX; tÞ, and energy density q0eðX; tÞ. The other perspective is that the material system contains atoms, each of which has
its own mass, momentum, potential energy and kinetic energy. In order to connect the two views, Hardy uses a localization
function w which spatially averages the properties of the atoms, and allows many atoms to contribute to a continuum prop-
erty at a specific position and time. In his original formulation, Hardy expressed w as a function of current position. In our
derivation, we instead choose it to be a function of reference position. The three key relations analogous to Hardy’s spatial
forms are:
q0ðXÞ ¼
XN

a¼1

mawðXa � XÞ ð10Þ

p0ðX; tÞ ¼
XN

a¼1

mavawðXa � XÞ ð11Þ

q0ðXÞeðX; tÞ ¼
XN

a¼1

1
2

maðvaÞ2 þ /a
� �

wðXa � XÞ: ð12Þ
A few important things to note:

� The localization function wðrÞ is non-negative,1i.e. wðrÞP 0.
� wðrÞ has dimensions of inverse volume.
� wðrÞ is a normalized function, thus
ile it is possible to choose localization functions that are not non-negative (as discussed on p. 77 of [28]), in practice this is rarely done as it contains the
al to admit unbounded values for the extremum. In such instances, additional regularity requirements are needed.



Fig. 1. Schematic showing the motion of atom a : Xa ! xa and a nearby point X! x. Also shown are the support of the localization function in the
reference configuration wX and its image in the current wt

x which is subject to deformation. For comparison the undeformed kernel wx identical to wX but
centered at x in the current configuration is also shown.

J.A. Zimmerman et al. / Journal of Computational Physics 229 (2010) 2364–2389 2367
Z
X

wðrÞd3r ¼ 1; ð13Þ

where X � R3 is the domain of interest containing the collection of atoms.
� In Eq. (12), the total potential energy density of the system is expressed as the summation of individual atomic potential

energies, /a.
� The velocity field v is defined by the expression
vðX; tÞ � p0ðX; tÞ
q0ðXÞ

¼
PN

a¼1mavawðXa � XÞPN
a¼1mawðXa � XÞ

: ð14Þ

which is effectively a mass weighted average. With velocity defined in this manner, the displacement field u can be de-
fined as PN a a a
uðX; tÞ ¼ a¼1m u wðX � XÞPN
a¼1mawðXa � XÞ

; ð15Þ
which is consistent with the velocity field defined in (14), i.e. v ¼ du
dt . With a displacement field we can construct the motion

of material points X from reference to current configuration as a function of time in the usual way xðX; tÞ ¼ Xþ uðX; tÞ. Fur-
thermore, we can apply the differential operator rX to (15) to define a displacement gradient,
rXu ¼
PN

a¼1maðua � uðX; tÞÞ � rXwðXa � XÞPN
a¼1mawðXa � XÞ

; ð16Þ
which then can be used to form a locally defined deformation gradient FðX; tÞ ¼ 1þrXu. However, this use of Hardy local-
ization places additional requirements on the smoothness and exact form of w. For example, a so-called ‘‘top hat” or radial
Heaviside function that is constant and non-zero only in compact region would not produce smooth, continuous displace-
ment gradients.

The question arises: can one relate a Lagrangian/referential field ĝðX; tÞ derived from atomic data to an Eulerian/spatial
field ~gðx; tÞ derived from the same data? First, let us examine the mass density starting with the referential definition
(10). To map this referential function into a spatial one we need to transform the localization function w and its base point
X to the current configuration. Given a reference configuration for the atoms fXag, which defines the atomic displacements
uaðtÞ ¼ xaðtÞ � Xa, we can construct the continuum/coarse-scale motion xðX; tÞ ¼ uðX; tÞ þ X from the field u defined by Eq.
(15). Then
wX ¼ wXðx;tÞ � wt
x ð17Þ
where wt
x is the deformed version of wX which is not equivalent to wx in general, please refer to the schematic in Fig. 1. Here,

we have introduced new notation, e.g. wXðX
aÞ ¼ wðXa � XÞ, to make clear that the function w on R3 transforms differently

than its argument Xa in going from reference to current configuration, i.e. the kernel transforms with the displacement field
and the atoms follow their particular trajectories. To first order, i.e. where the kernel radius is small enough relative to the
spatial gradient of the motion F,
Z

X0

wXðYÞ d3Y ¼
Z

X
wt

xðyÞ
1

det F
d3y � 1

det F

Z
X

wt
xðyÞ d3y ð18Þ
and ðdet FÞwx � wt
x since

R
X0

wXðXÞ d3X ¼
R

X wxðxÞ d3x ¼ 1. With this in hand, we have the usual relation between referential
and spatial mass density
q0ðXÞ ¼
XN

a¼1

mawXðXaÞ ¼
XN

a¼1

mawt
xðxaÞ � det F

XN

a¼1

mawxðxaÞ ¼ det FðX; tÞ qðX; tÞ ð19Þ
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This derivation can also be directly applied to the momentum and energy densities which were defined as primary fields in
(11) and (12). Please note that, despite the mapping of wX to wt

x by the coarse-scale motion, the same atoms may not con-
tribute to the density of corresponding points X and x. For solids, 2 where the discrepancies in coarse motion xðXa; tÞ and the
atomic trajectory xaðtÞ are small and of a thermal nature, there should not be significant changes in the set of atoms that con-
tribute the densities calculated with wX or wt

x.3 Now turning to the derived velocity (14) and displacement (15) fields, we see
that they are simply ratios of the momentum to mass density and hence the determinant factors det F drop out so that
2 Flu
3 An

wXðXaÞ
provide
ûðX; tÞ ¼
PN

a¼1mauawXðXaÞPN
a¼1mawXðXaÞ

¼
PN

a¼1mauawt
xðxaÞPN

a¼1mawt
xðxaÞ

� det F
PN

a¼1mauawxðxaÞ
det F

PN
a¼1mawxðxaÞ

¼ ~uðx; tÞ ð20Þ
for instance. As will be made clear in Section 2.4.2, the connection between Lagrangian and Eulerian fluxes such as stress, is
made through the correspondence between continuum balance laws (1)–(3), and (7)–(9).

On closing this section, we note that in his earlier works [8,21], Hardy established an important property of the localiza-
tion function w. Given regularity of w, a bond function BabðXÞ between atoms a and b can be defined by the expression
BabðXÞ �
Z 1

0
wðkXab þ Xb � XÞdk; ð21Þ
where Xab ¼ Xa � Xb. By taking the derivative of wðkXab þ Xb � XÞ with respect to k,
@wðkXab þ Xb � XÞ
@k

¼ �Xab � rXwðkXab þ Xb � XÞ; ð22Þ
and then integrating from k ¼ 0 to k ¼ 1, one obtains the identity:
wðXa � XÞ � wðXb � XÞ ¼ �Xab � rXBabðXÞ: ð23Þ
We will revisit the connection between the bond function in the reference and current configuration in Section 2.4.2.

2.3. Energy and force assumptions

Hardy makes four key assumptions about the forms of the energies of, and forces on, the atoms in the system. The first is
that the total potential energy of the system, U, can be considered to be the summation of individual potential energies of
each atom within the system,
U ¼
XN

a¼1

/a: ð24Þ
The usual procedure for constructing /a is to partition the energies per bond to each of the constituent atoms such that the
partition factors add to one.

The second assumption is that the force on any atom can be expressed by the summation
fa � � @U
@xa ¼

XN

b–a

fab
: ð25Þ
Although it is not always clear what the physical meaning of fab is, this partition can always be made. When U is the sum-
mation of pair potentials, /a ¼ 1

2

PN
b–a/

abðxabÞ where xab ¼ kxabk and xab � xa � xb, or for the embedded atom method (EAM)
[29], fab obviously means the force exerted on atom a by atom b. However, for some multi-body potentials, such as the 3-
body term in the Stillinger–Weber potential [30], the meaning is not so straightforward; nevertheless, the force partition
(25) can be constructed. This partition is not unique; more discussion of this fact will be given in Sections 2.4.3 and 4.3.4.

The third assumption Hardy makes is that the atomic potential energies depend only on the relative inter-atomic dis-
tances, /a ¼ /aðxab; xac; . . . ; xbcÞ, so
fa ¼ �
XN

b–a

@U
@xab

xab

xab
¼ �

XN

b–a

XN

c¼1

@/c

@xab

xab

xab
: ð26Þ
This expression includes the possibility that a ¼ c. While it is clear that radially-symmetric potentials such as Lennard-Jones
[31,32] and EAM satisfy this assumption, it is also true that potential energies that depend on bond orientations satisfy this
as well. For the 3-body term in the Stillinger–Weber potential [30], it can be shown by way of the law of cosines, which re-
lates the bond angles to relative inter-atomic distances, that this third assumption is valid.
ids and granular materials will be touched on in Section 5 at the end of the paper.
alternate viewpoint considering only the transformation of discrete values of the localization function following the trajectories of the relevant atoms
from the reference to current, would not lead to any change in the set of atoms but says nothing about points in space not occupied by atoms nor
s a simple route to (18).
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Finally, the fourth assumption made is that each atomic potential energy depends only on the distances between the
atom under consideration and all other atoms, /a ¼ /aðxab; xac; . . . ; xaNÞ. Thus, the force between atoms a and b can be ex-
pressed as
fab ¼ � @/a

@xab
þ @/b

@xab

� �
xab

xab
¼ �fba

: ð27Þ
Clearly, while pair potentials and EAM qualify for this assumption, the potential of Stillinger–Weber does not since the angle
between atoms a; b; c depends on all three relative distances including xbc. This should in no-way imply that the quantity fab

cannot be defined. Rather, we merely note that for some choices of inter-atomic potential Hardy’s fourth assumption does
not appear to be applicable. This point will be further addressed in Section 4.

2.4. Derivation of continuum expressions

Here we apply the kinematic definitions (10)–(12) to the balance laws (7)–(9) in order to define the referential fluxes of
stress and heat. We also make connections between these fluxes and their spatial counterparts through the well-known Piola
transform which is ultimately derived from the relations between the respective balance laws, (7)–(9) and (1)–(3),
respectively.

2.4.1. Balance of mass
Inspection of Eq. (10) reveals that
dq0

dt
¼ 0;
since locations of atoms in the reference configuration, fXag, are fixed.

2.4.2. Balance of linear momentum
Starting with Hardy’s expression for momentum density (11),
q0
dv
dt
¼ dp0

dt
¼ d

dt

XN

a¼1

mavawðXa � XÞ
( )

¼
XN

a¼1

ma dva

dt
wðXa � XÞ ¼

XN

a¼1

ðfa þmabaÞwðXa � XÞ;
where we have applied Newton’s 2nd law for each atom and divided the total force on atom a into the sum of total internal
force fa and the body force maba. The internal force term on the RHS of the above expression can be combined with Hardy’s
second force assumption to obtain,
XN

a¼1

fawðXa � XÞ ¼
XN

a¼1

XN

b–a

fabwðXa � XÞ:
Since a and b run over all atoms in the system, they are considered dummy indices and can be switched. By doing this, and
using the symmetry condition, (27), one obtains
XN

a¼1

fawðXa � XÞ ¼ 1
2

XN

a¼1

XN

b–a
fabðwðXa � XÞ � wðXb � XÞÞ:
Using this with expression (23), the time derivative of the momentum density becomes
q0
dv
dt
¼
XN

a¼1

ð1
2

XN

b–a

fabð�Xab � rXBabðXÞÞ þmabawðXa � XÞÞ ð28Þ

¼ rX � ð�
1
2

XN

a¼1

XN

b–a
fab � XabBabðXÞÞ þ

XN

a¼1

mabawðXa � XÞ: ð29Þ
Comparing Eq. (29) with the continuum balance of momentum (8), we observe that in order for these expressions to be con-
sistent with one another,
PðX; tÞ ¼ �1
2

XN

a¼1

XN

b–a

fab � XabBabðXÞ; ð30Þ
and
bðX; tÞ ¼ 1
q0ðXÞ

XN

a¼1

mabawðXa � XÞ ¼
PN

a¼1mabawðXa � XÞPN
a¼1mawðXa � XÞ

: ð31Þ
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For pair and other central force potentials (e.g. EAM),
4 The
regardl

5 The
configu
P ¼ 1
2

XN

a¼1

XN

b–a

@/a

@xab
þ @/b

@xab

� �
xab � Xab

xab
BabðXÞ: ð32Þ
This expression can be further simplified by splitting this expression into two terms, switching the dummy indices used in
one of the terms, and using the relations xba ¼ xab;xba ¼ �xab, Xba ¼ �Xab and Bba ¼ Bab to obtain
P ¼
XN

a¼1

XN

b–a

@/b

@xab

xab � Xab

xab
BabðXÞ: ð33Þ
It is interesting to note that Eq. (30) shows that P is connected to the underlying atomic displacements through the inter-
atomic forces fab. It is also through this connection that P is implicitly dependent on thermal motion of the atomic system.
Our expression defines stress without the need to necessarily define a deformation gradient field or a hyperelastic stored
energy function.

Also note that Eq. (30) contains only force terms on the right-hand side; no explicit dependence on velocity is present, 4

unlike the Cauchy stress expression
rðx; tÞ ¼ �1
2

XN

a¼1

XN

b–a

fab � xabeBabðxÞ �
XN

a¼1

mawa �wa ~wðxa � xÞ ð34Þ
from the Eulerian analysis [8,21]. The relative velocity wa is defined
waðx; tÞ � va � vðx; tÞ: ð35Þ
and has the property
XN

a¼1

mawa ~wðxa � xÞ ¼ 0 ð36Þ
by virtue of the Eulerian analogue of the definition (14). Note that ~w and eB are the localization and bond functions expressed
in units of inverse current/deformed volume rather than units of inverse reference/undeformed volume.

In addition to the well-known connection between the continuum measures of stress, P and r, we now show that our
expression for P given in Eq. (30) can be directly related to Hardy’s Cauchy stress expression (34) in a manner consistent
with this connection. Given the continuum Piola transformation5 from 1st P–K stress to Cauchy stress, r ¼ 1

J P � FT where
J � det F, we produce
1
J

P � FT ¼ �1
J

XN

a¼1

XN

b–a

1
2

fab � XabBabðXÞ � FT : ð37Þ
In order to simplify this equation, we assert that the position of each atom can be decomposed into a rigid body trans-
lation, rðtÞ, a homogeneous deformation F relative to the material point X, plus a perturbation due to thermal fluctuations
and/or inhomogeneities in the deformation field,
xa ¼ rðtÞ þ FðX; tÞ � Xa þ zaðX; tÞ; ð38Þ
where za is merely the remainder of xa with respect to the expansion of xa to first order in Xa. We define Na ¼ Xa � X where
now X satisfies the relation
X ¼ 1
q0ðXÞ

XN

a¼1

maXawðXa � XÞ: ð39Þ
This relation enforces the restriction that material points X coincide with the centers of mass of the localization volumes they
are associated with. This restriction apparently makes the selection of material points X non-trivial since (39) is an implicit
relationship. However, since most crystal structures possess a high degree of symmetry, especially if an undeformed, defect-
free configuration is used as a reference state, immediate selection of the appropriate locations of material points is possible
and can be as dense as the lattice itself. Eq. (39) allows us to write
va ¼ dr
dt
þ dF

dt
� Xa þ dz

dt

a

¼ dr
dt
þ dF

dt
� Xþ dF

dt
� Na þ dz

dt

a

ð40Þ
P–K expression (30) also differs from the Cauchy expression (34) in that it gives a zero value for the somewhat degenerate case of a non-interacting gas
ess of temperature.

Piola transform comes directly from Nanson’s formula da ¼ detðFÞF�T dA which relates the change in directed area elements from reference to current
ration by way of the deformation gradient.
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and then to identify
wa ¼ dF
dt

Na þ dz
dt

a

ð41Þ
with the part of the velocity va that satisfies (36). Since xab ¼ F � Xab þ zab, we can recast (37) as
1
J

P � FT ¼ � 1
2J

XN

a¼1

XN

b–a
fab � ðxab � zabÞBabðXÞ ¼ � 1

2J

XN

a¼1

XN

b–a
fab � xabBabðXÞ þ 1

2J

XN

a¼1

XN

b–a
fab � zabBabðXÞ: ð42Þ
If we now examine the special case of a full system average such that 1
J Bab ¼ 1=V for all points in a system with finite

volume V, the Piola transformed P from (42) becomes
1
J

P � FT ¼ � 1
2V

XN

a¼1

XN

b–a
fab � xab þ 1

2V

XN

a¼1

XN

b–a
fab � zab; ð43Þ
and the Cauchy stress (34) becomes
r ¼ � 1
2V

XN

a¼1

XN

b–a

fab � xab � 1
V

XN

a¼1

mawa �wa: ð44Þ
The difference between these two expressions, (43) and (44), is
1
J

P � FT �r ¼ 1
V

XN

a¼1

1
2

XN

b–a
fab � zab þ

XN

a¼1

mawa �wa ¼ 1
V

XN

a¼1

ðfa � za þmawa �waÞ ð45Þ
after using the identity
1
2

XN

a¼1

XN

b–a

fab � zab ¼ 1
2

XN

a¼1

XN

b–a

fab � ðza � zbÞ ¼ 1
2

XN

a¼1

XN

b–a

fab � za þ
XN

a¼1

XN

b–a

fba � zb

 !
¼
XN

a¼1

fa � za ð46Þ
which results simply from the manipulation of dummy indices, the definition (25) and the symmetry condition (27). In the
absence of a body force (fa ¼ ma dva

dt ),
XN

a¼1

fa � za

* +
¼ d

dt

XN

a¼1

mava � za

* +
�

XN

a¼1

mava � dza

dt

* +
¼ �

XN

a¼1

mava � dza

dt

* +

¼ �
XN

a¼1

maðv þwaÞ � wa � dF
dt

Na
� �* +

¼ � v �
XN

a¼1

mawa

* +
þ v � dF

dt

XN

a¼1

maNa

* +
�

XN

a¼1

mawa �wa

* +
þ

XN

a¼1

mawa � dF
dt

Na

* +

¼ �
XN

a¼1

mawa �wa

* +
þ

XN

a¼1

mawa � dF
dt

Na

* +
ð47Þ
given the definition of Na, and the fact that time averages h�i of exact differentials of bounded quantities are zero. The iden-
tity (47) is a simply a version of the virial theorem and if we assume a steady state, where dF

dt must be zero, then we have
XN

a¼1

fa � za

* +
þ

XN

a¼1

mawa �wa

* +
¼ 0; ð48Þ
This does not mean that F is necessarily fixed at the identity; rather, it means that (48) is satisfied only for truly steady sys-
tems. Now we can return to (45) and show that the (time-averaged) expressions for the transformed 1st Piola–Kirchhoff
stress and the Cauchy stress are consistent:
1
J P � FT �r
D E

¼ 1
V

PN
a¼1

fa � za þmawa �wa
� �

¼ 0 ð49Þ
by use of (48).
The main difficulty in extending this proof to the general case is that the atoms contributing to the sums in (34) and (37)

may be different depending on how atoms are flowing through space. Moreover, mapping the reference frame function
BabðXÞ ¼ Bab

X to the spatial eBabðxÞ ¼ Bab
x is non-trivial (as alluded to in Section 2.2). Rather than attempting to do this analysis,

in Section 3 we will explore how the expression for P in Eq. (30) performs for cases where the thermal fluctuations are sig-
nificant, and compare our results with expectations from continuum mechanics and with the usual Hardy definition for Cau-
chy stress.
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2.4.3. Balance of energy
Starting with the Lagrangian expression for the system energy (12),
dðq0eÞ
dt

¼ q0
de
dt
¼ d

dt

XN

a¼1

1
2

maðvaÞ2 þ /a
� �

wðXa � XÞ
( )

¼
XN

a¼1
ma dva

dt
� va

� �
þ d/a

dt

� �
wðXa � XÞ

¼
XN

a¼1

ðfa þmabaÞ � va þ d/a

dt

� �
wðXa � XÞ:
By imposing the second and third force assumptions, this simplifies to
q0
de
dt
¼ rX �

XN

a¼1

XN

b–a

XN

c–a

@/c

@xab

xab

xab
� va

� �
XacBacðXÞ

 !
þ
XN

a¼1

maba � vawðXa � XÞ: ð50Þ
Eq. (50) can be further simplified by using the fourth force assumption:
q0
de
dt
¼ rX �

XN

a¼1

XN

b–a

XN

c–a

@/c

@xab
ðdac þ dbcÞ

xab

xab
� va

� �
XacBacðXÞ þ

XN

a¼1

maba � vawðXa � XÞ ð51Þ

¼ rX �
XN

a¼1

XN

b–a

@/b

@xab

xab

xab
� va

� �
XabBabðXÞ

 !
þ
XN

a¼1

maba � vawðXa � XÞ ð52Þ
To proceed further, we separate atomic motion from continuum motion in two ways. First, we split the atomic velocities
va into the continuum velocity vðX; tÞ and a relative velocity waðX; tÞ as in (35). Next we recall that earlier we recognized
that the total energy, e, contains contributions from both internal energy and continuum-scale kinetic energy. We separate
this using the expression e ¼ �þ 1

2 v2:
q0
de
dt
¼ q0

d�
dt
þ q0

dv
dt
� v ð53Þ
Application of (53) to the LHS of (52) and (35) to the RHS of (52) produces:
q0
d�
dt
þq0

dv
dt
� v ¼ rX �

XN

a¼1

XN

b–a

@/b

@xab

xab

xab
� ðv þwaÞ

� �
XabBabðXÞ

 !
þ
XN

a¼1

maba � ðv þwaÞwðXa �XÞ

¼ rX � ðv � PÞ þrX �
XN

a¼1

XN

b–a

@/b

@xab

xab

xab
�wa

� �
XabBabðXÞ

 !
þ q0b � v þ

XN

a¼1

maba �wawðXa �XÞ

¼ ðrXvÞ : Pþ v � ðrX � Pþq0bÞ þrX �
XN

a¼1

XN

b–a

@/b

@xab

xab

xab
�wa

� �
XabBabðXÞ

 !
þ
XN

a¼1

maba �wawðXa �XÞ
Using the balance of linear momentum Eq. (8), this simplifies to
q0
d�
dt
¼ ðrXvÞ : PþrX �

XN

a¼1

XN

b–a

@/b

@xab

xab

xab
�wa

� �
XabBabðXÞ

 !
þ
XN

a¼1

maba �wawðXa � XÞ: ð54Þ
Since the rX and d
dt operators are commutative, rXv ¼ dF

dt. Hence,
q0
d�
dt
¼ P :

dF
dt
�rX � Q þ q0h; ð55Þ
where
Q ðX; tÞ ¼ �
XN

a¼1

XN

b–a

@/b

@xab

xab

xab
�wa

� �
XabBabðXÞ ð56Þ
is the heat flux as expressed in the reference configuration. We note that like the expression for stress this expression con-
tains only a potential term and not a kinetic term, unlike the spatial frame heat flux expression derived by Hardy [33]. Nev-
ertheless, thermal motion does enter this expression through the derivatives of the potential energy, the inter-atomic
positions xab, and the relative velocities wa.
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Comparison of (54) with (55) also produces the relation defining energy generation per unit mass:
6 In t
calculat
hðX; tÞ ¼ 1
q0ðXÞ

XN

a¼1

maba �wawðXa � XÞ ¼
PN

a¼1maba �wawðXa � XÞPN
a¼1mawðXa � XÞ

ð57Þ
We note that for a uniform body force field this term simplifies to zero. This term would be also be negligible for a non-uni-
form body force field for which significant variations in the field are defined at larger length scales that the localization vol-
ume size associated with w. However, for situations where b truly varies from atom to atom, it appears that the work done by
the field against the relative velocity field generates energy. The term h may also be related to other energy source terms that
can be introduced into the atomic energy, although none are present in the above analysis.

Hardy and colleagues also derived [33] an expression for temperature by considering the equipartition theorem and the
kinetic energy associated with atomic velocities relative to the velocity of the continuum at a spatial point,
Tðx; tÞ ¼ 1
3kB

PN
a¼1maðwaÞ2wðxa � xÞPN

a¼1wðxa � xÞ
; ð58Þ
which is a simple weighted average as opposed to the volume average in (10) for example. Here kB is Boltzman’s constant.
Similarly, we can define a temperature field using our densities expressed in the reference configuration,
TðX; tÞ ¼ 1
3kB

PN
a¼1maðwaÞ2wðXa � XÞPN

a¼1wðX
a � XÞ

: ð59Þ
This definition is consistent with the allocation of 1
2 kBT of kinetic energy per degree of freedom for an atomic system. For

solids, this allocation is somewhat inexact due to constraints, e.g. periodic boundary conditions, that may be acting on
the system, but this difference is minimal for systems where the number of atoms is much larger than the number of
constraints.
3. Evaluation of material frame expressions

In this section, we examine the behavior of our P–K stress expression for several molecular dynamics simulations. These
simulations will confirm that our expression for P–K stress is consistent with both the virial stress and the Cauchy stress
expression defined by Hardy.6 All of our simulations involve systems of copper modeled using the EAM potential by Foiles
et al. [29]. This potential creates an equilibrium, face-centered-cubic crystal of Cu of lattice parameter equal to 3.615 Å at zero
temperature. For molecular dynamics simulations, a timestep of 0.001 ps is used.

Calculations are done using specialized routines written for ParaDyn [34] and the large-scale atomic/molecular massively
parallel simulator (LAMMPS) [35], molecular simulation codes developed at Sandia National Laboratories. For the analyses
presented in this section, the choice of the zero temperature, undeformed system is used as our material configuration. The
rationale for this selection will be elaborated upon in the subsequent discussion section.

3.1. Stress for a constrained finite temperature system

In this and the following section, we present simulations of a system containing 4000 atoms (10 	 10 	 10 unit cells),
where periodic boundary conditions are enforced on all sides of the simulation box. Two sets of calculations are performed:
one using a single point in the center of system with a spherical localization volume of radius 15 Å and a quartic polynomial
localization function, and another using a step function where both w and Bab equal the quantity V�1

0 (where V0 is the system
size at zero temperature and deformation).

We first examine the situation where our system is constrained to remain at the reference volume, but heated to a finite,
non-zero temperature. In this instance F ¼ 1 and J ¼ 1; hence, the values of 1st P–K and Cauchy stress should coincide. Un-
less otherwise stated, the results presented here refer to the continuum stress measures evaluated for the single point sim-
ulations. The results obtained in the step-based simulations were similar in all cases, with stress values much closer in
agreement to the system virial as one would expect since all atoms and bonds contribute uniformly in that analysis.

Fig. 2 shows the variation of instantaneous pressure with time for a system that is heated to 100 K. ‘Pressure’ in this case
refers to the negative of the hydrostatic stress for each stress measure, i.e. the P–K pressure equals � 1

3 TraceðPÞ ¼ � 1
3 PkK , the

Cauchy pressure equals � 1
3 TraceðrÞ and the same relation is used for the system virial. The distributions of P–K and Cauchy

nearly perfectly overlap with one another, and both distributions are centered around the virial distribution. Also, since the
volume of material used for evaluation is a subset of the whole system, the variations from the mean value are larger in mag-
nitude for both P–K and Cauchy pressures as compared with the variation observed in the virial. It is interesting to note that
while the mathematical analysis presented in the previous section showed that the P–K and Cauchy stress expressions agree
with one another (through the Jr ¼ P � FT transformation) only if a long time average is taken, Fig. 2 shows that close
his section, all calculations of Cauchy stress ðrÞ are determined using Eq. (34), where the fixed spatial point x coincides with the material point X used to
e P via Eq. (30).



Fig. 2. Variation of instantaneous pressure with time for a constrained system at 100 K.
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agreement also exists for stress evaluations at specific instants in time. We suspect that this is due to the ensemble averaging
provided by the Hardy method.

The agreement between our stress measures and the virial is easier to see by using the data in Fig. 2 to calculate cumu-
lative time-averaged pressures. Fig. 3 shows the variation of these time-averaged pressures with time for the same duration,
106 timesteps. This figure shows that the time-averaged pressures essentially converge within 500,000 timesteps (0.5 ns),
and that the converged values of P–K, Cauchy and virial pressures are very close to one another. This agreement is more
clearly shown in Table 1, which compares the converged values of P–K pressure (after 106 timesteps) with the virial pressure
for both the point-based analysis shown in Fig. 3 and the step-based analysis. We note in Table 1 that the percent difference
between P–K and virial pressures is much less than 1%, and that this difference is smaller for the step-based analysis (which
uses all atoms in the system) than for the point-based analysis.

Table 1 also shows the converged time-averaged pressures for systems heated to 300 K and 675 K, values approximately
22% and 50%, respectively, of the melting temperature of copper. It can be seen that the agreement between P–K pressure
and the virial remains excellent even at these high temperatures and stress levels. This close agreement is emphasized in
Fig. 4, which graphically shows the variation of pressure with increasing temperature for this constrained system. It was also
observed that, at the highest temperature simulated of 675 K, agreement between the P–K pressure and the virial improved
if a longer time average is taken.

The above analyses show that our derived expression for P–K stress is consistent with a thermomechanical measure of
stress despite the fact that it contains only a potential and not a kinetic term, unlike the Cauchy stress expression derived
by Hardy. The small level of error between P–K stress and the system virial noted in Table 1 is much smaller than the amount
of stress attributed to the kinetic part of Hardy’s Cauchy stress or the virial itself. That kinetic part is approximately equal to
0.1169, 0.3507 and 0.7891 GPa for the temperatures considered (100, 300 and 675 K, respectively). Comparison of these
values with the virial pressure listed for each temperature, given in Table 1, shows that they are significant fractions of
Fig. 3. Variation of time-averaged pressure with time for a constrained system at 100 K.



Table 1
Time-averaged pressures after 106 timesteps for constrained volume simulations.

Temperature (K) Point/step Virial pressure (GPa) P–K pressure (GPa) % Difference

100 Point 0.6613775 0.6618136 0.06653
100 Step 0.6614168 0.6613937 �0.00350
300 Point 1.944335 1.944422 0.00448
300 Step 1.944465 1.944413 �0.00264
675 Point 4.335872 4.334868 �0.02316
675 Step 4.335840 4.336577 0.01699

Fig. 4. (a) Time-averaged pressures after 106 timesteps for constrained volume simulations performed at various temperatures. (b) Differences between P–
K and virial measures of pressure at various temperatures.
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the virial, about 17.7%, 18.0% and 18.2%, respectively. This finding confirms that for cases where the kinetic contribution to
the stress tensor is significant, the P–K stress expression yields a full measure of stress in agreement with the expression for
the total Cauchy stress, which explicitly includes this kinetic contribution.
3.2. Finite temperature deformation

For the situation of a constrained volume, the values of P–K and Cauchy stress were not anticipated to differ by any sig-
nificant amount. However, we have yet to consider a case for which deformation occurs and the two values should be related
by the Piola transform r ¼ 1

J P � FT . We now examine the scenario where our system starts out at zero temperature, is heated
over the course of 106 timesteps (1 ns) to a finite temperature but allowed to expand in order to maintain a condition of zero
pressure, is equilibrated for an additional 106 timesteps at that non-zero temperature and zero pressure, and is then triax-
ially stretched an additional 1% or 5% from this expanded state.

Fig. 5 shows the variation of the hydrostatic stresses for P, r (as measured using the original Hardy formulation) and the
system virial for a stretch of 1% after equilibration at 100 K. In this section, we plot and discuss only values measured from
the simulations performed with the point-based analysis; however, values calculated with step-based analysis were virtually
the same. Fig. 5 shows large variations in the instantaneous estimates of P and r as compared with the system virial. It is
observed that this variation stays within a limit of approximately 
15% of the long time average after 400,000 timesteps
(0.4 ns) have elapsed. As expected, the values of P are slightly higher than the values of r and the virial. Fig. 6 compares
the transformed stress 1

J P � FT to the Cauchy stress and virial, and demonstrates that the transformed P–K stress is in close
correspondence with the Cauchy measure. In this figure, we see that the distributions of transformed Piola–Kirchhoff stress
and Cauchy stress nearly perfectly overlap with one another, and both distributions are centered around the virial distribu-
tion. Again, we note that although the mathematical analysis presented in the previous section showed that the P–K and
Cauchy stress expressions agree with one another only if a long time average is taken, Fig. 6 shows that close agreement also
exists for stress evaluations at specific instants in time.

Fig. 7 shows the cumulative time averages of the four stress values (P;r, virial and transformed P). It is observed that the
system virial approaches its long time average in a short amount of time, �20,000 timesteps (0.02 ns), and that both the Cau-
chy stress and transformed P–K stress approach this same value within approximately 200,000 timesteps (0.2 ns). The P–K
stress also approaches its own long time average within this same amount of time, and the value is appropriately higher.



Fig. 5. Variation of the instantaneous hydrostatic stresses for P Eq. (30), r Eq. (34) and the system virial for a stretch of 1% after equilibration at 100 K and
zero pressure.

Fig. 6. Variation of the instantaneous hydrostatic stresses for 1
J P � FT ;r and the system virial for a stretch of 1% after equilibration at 100 K and zero

pressure.
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Values of these long time averages are listed in Table 2. These results clearly show a negligible difference between the trans-
formed P–K stress value and the virial of the system. Thus, we again conclude that our derived expression is consistent with
the continuum relation between Cauchy and P–K stress despite the absence of a kinetic term.

In addition to our simulation results for the case of 1% stretch at 100 K, Table 2 also shows results for systems heated to
300 K and 675 K for stretches of both 1% and 5% following thermal equilibration at zero pressure. We observe that in all
cases, the difference between the hydrostatic virial stress and the hydrostatic transformed P–K stress is very small with a
difference of, at most, 1%. The results in Figs. 8(a) and (b) show near perfect agreement of the virial and the transformed
P–K stress across a range of temperatures.7
7 These figures reveal that at higher temperatures a lower amount of stress is produced within the system. This result can be attributed to the temperature
dependence of the elastic constants that softens (decreases) their value with increasing temperature.



Fig. 7.

(a) Variation of time-averaged hydrostatic stress measures with time for a stretch of 1% after equilibration at 100 K and zero pressure. (b) Close-up of

(a) for the first 250,000 timesteps.
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3.3. Tensile stretching of a center-cracked body

The previous two examples show that our formulation enables the calculation of 1st Piola–Kirchhoff stress that is con-
sistent with estimates of the Cauchy stress, either using the system virial or the original Hardy formulation. However, these
examples only produce a single value of stress representative of the entire system, i.e. systems subjected to a homogeneous
deformation state. The strength of our formulation lies in its ability to produce a field of spatially varying values of stress for
cases where an inhomogeneous deformation is produced.

The Hardy formalism has much in common with the data reduction and smoothing technique called moving least squares
(MLS) [36]. For instance, (15) can been seen as the solution to a weighted least-squares problem using a lumped version of
the least-squares matrix [37]. Although effective, it becomes expensive to recalculate, say (15) at every sample point of inter-
est in a simulation with large spatial variations. Instead we choose to sample on a collection of points I ¼ 1; . . . ;M on a reg-
ular grid and then use finite element shape functions NIðXÞ to construct an approximation to the field of interest, for example
the displacement field
uðX; tÞ ¼
XM

I¼1

uIðtÞNIðXÞ ¼
XM

I¼1

PN
a¼1mauawðXa � XIÞPN

a¼1mawðXa � XIÞ
NIðXÞ ð60Þ
where we can define and store the matrices wIa ¼ wðXa � XIÞ and BIab ¼ BabðXIÞ. This also gives us a second way to estimate
the displacement gradient (16) by taking the gradient of the interpolation NIðXÞ.

In this section, we examine a system containing a center crack and compare the inhomogeneous stress fields that arise
due to tensile stretching. Our system consists 9840 atoms, approximately 20 	 20 	 6 unit cells, that contains a center crack
four unit cells wide in the center. We acknowledge that this is a small and highly constrained system, and use it only as a
means to show our ability to estimate spatially varying stress fields. The crack is created by excluding interactions between
atoms above the center-plane of the system (and within the four unit cell width) and atoms below the center-plane. Periodic
boundary conditions are used in the horizontal and thickness directions, while atoms within two unit cells of the system’s
upper and lower boundaries are controlled by prescribing a fixed velocity of 
 0:1 Å/ps, respectively. Given the dimensions
of our system, this produces an approximate strain rate of initial value 3:46	 10�3 ps�1 ¼ 3:46	 109 s�1. Before inducing the
stretching, our system is relaxed using a conjugate gradient minimization algorithm in order to relax the upper, lower and
crack boundaries and set the reference configuration.

To calculate stress at material points, we use localization volumes consisting of rectangular parallelepipeds, and localiza-
tion functions that are multiples of three linear shape functions, one for each orthogonal direction, as in the finite element



Table 2
Time-averaged stresses after 106 timesteps for simulations of a heated and triaxially strained system. Here, ‘% difference’ refers to the difference between
transformed P–K stress (the 6th) column) and the virial.

T (K) Point/step Total strain Virial (GPa) P–K (GPa) 1
J ðP—KÞFT % Difference

0 Point 0.01 3.876275 3.954033 3.876123 �0.00394
0 Step 0.01 3.876273 3.954190 3.876277 �0.00009
0 Point 0.05 14.70036 16.20713 14.70035 �0.00009
0 Step 0.05 14.70036 16.20710 14.70032 �0.00026
100 Point 0.01168 3.779846 3.868452 3.779658 �0.00499
100 Step 0.01163 3.782552 3.871040 3.782538 �0.00038
100 Point 0.05169 14.26000 15.77334 14.26085 0.00597
300 Point 0.01495 3.581698 3.690054 3.582124 0.01190
300 Step 0.01495 3.579387 3.687273 3.579472 0.002386
300 Point 0.05515 13.30167 14.80901 13.30142 �0.00186
675 Point 0.02174 3.194773 3.334715 3.194304 �0.01469
675 Step 0.02174 3.194821 3.303813 3.164701 �0.94278
675 Point 0.06221 11.33258 12.78735 11.33345 0.00768

Fig. 8. Variation of time-averaged hydrostatic stress measures after 106 timesteps with temperature for a stretch of (a) 1%, and (b) 5% after equilibration at
that temperature.

Fig. 9. Displacement field uy for a center-cracked body vertically stretched 6.9%. (Left) Atoms pictured with overlaying mesh and nodes. (Right) Mesh
elements showing contours of continuum displacement field; mesh is shown with gray lines to identify elements.
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method. For this system, our mesh consists of 10 	 15 	 1 = 150 elements where our mesh extends beyond the atomic sys-
tem in the vertical direction by 2.5 unit cells at both the upper and lower boundaries.

Fig. 9 shows the displaced atoms, colored by the values of the component uy of their displacement vector, as well as uy

displacement field evaluated at nodes and interpolated through elements, for the center-cracked body vertically stretched by
approximately 6.9%. The left portion of Fig. 9 clearly shows that the nodal values of displacement agree with the values of
nearby atoms, while the right portion displays a displacement field consistent with expectations from fracture mechanics. It
is interesting to note that the normalization present in Eq. (15) enables approximately correct values of uy to be calculated at
nodes bordering the boundaries of the atomic system, even though 1/2 of each node’s localization volume is empty. This is
because the normalization produces a displacement value corresponding to the center of mass of the localization volume and
assigns that value to the node. And, since each element only contains a small number of atoms, the difference between the
nodal position and the center of mass position is relatively small. Obviously, special care should be taken to use small ele-
ments near the boundary of an enclosed atomistic system, or near any region for which mass is unevenly distributed within
the localization volume in the reference configuration. Nodes with localization volumes that are completely empty of atoms
are assigned a zero value.

Fig. 10 shows the fields of Pyy and ryy for the same stretch state of 6.9%. These fields are consistent with expectations from
fracture mechanics, possessing features such as zero stress in the crack opening region and concentrations of tensile stress
near the crack tips. Consistency between our formulation and Hardy’s is shown by the qualitative similarity of the fields,
with values of ryy having, in general, a slightly higher magnitude than the corresponding value of Pyy. Quantitative consis-
tency can be evaluated by comparing the values at a specific material point. We choose a node near the crack tip, at a posi-
tion of {21.69 Å, 10.845 Å, 10.845 Å} (six elements down from the top of the system, and two elements from the right edge).
At this node, the value of Pyy equals 9.40327 GPa, and the value of ryy is 10.0719 GPa. Using our method to estimate displace-
ment gradient rXu, and by using the relation F ¼ 1þrXu, the value of transformed P–K stress is calculated to be
9.48638 GPa. This value is somewhat lower than the expected value from the Hardy expression (a difference of about
�5.81%). However, our earlier simulation examples indicate that this agreement may improve if the system is fixed at a given
(inhomogeneous) deformation state and stress values are time-averaged for periods �1 ns. It may also be the case that dis-
placement gradient values are actually higher in magnitude than estimated here due to the small size of the system and the
use of (relatively) large localization volumes near the crack tip, i.e. the estimated displacement gradient also has errors asso-
ciated with it.
4. Formulation for a micromorphic continuum

In Section 2.3, we noted that Hardy makes four assumptions about the forms of the energies of, and forces on, the atoms
in the system. We also noted that arbitrary multi-body potentials do not necessarily satisfy all four assumptions. For exam-
ple, the Stillinger–Weber potential for silicon [30], contains a 3-body term that violates the fourth assumption. This assump-
Fig. 10. Stress fields for a center-cracked body vertically stretched 6.9%. (Left) Mesh elements showing contours of continuum field Pyy . (Right) Mesh
elements showing contours of continuum field ryy as determined from the original Hardy formulation. In both pictures, the mesh is shown with gray lines
to identify elements.
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tion is pivotal as it leads to a simplified form of the inter-atomic force between two atoms, which is then used to isolate the
expression for stress in the balance of energy. Without this relationship, it is not straightforward to show that the stress
expression derived from momentum balance also satisfies energy balance.

This issue has been examined further by both Delph [38] and Chen [39]. In his work, Delph uses the linear momentum
balance to derive a generalized expression for stress that includes multi-body terms up to Nth order (where N is the number
of atoms in the system). However, this same expression is not present within his analysis of the balance of energy. On the
other hand, Chen restricts her analysis to consider only potentials with 2-body and 3-body terms, such as the aforemen-
tioned Stillinger–Weber potential and the potential by Tersoff [40,41]. While Chen does manage to show that the stress
expression defined by linear momentum appears in the energy balance, her derivation is unclear in its consistency with re-
gard to the expression for the inter-atomic force between two atoms.

We hypothesize that the difficulties experienced by both Delph and Chen are due to the underlying assumption that
potential energies that use multi-body terms representative of directional bonding constitute a standard continuum at
the microscopic scale. Rather, we conjecture that an enhanced continuum theory is required in order to represent such
a material. One such theory is that of a micromorphic continuum as put forth by Eringen [42,43]. This theory is attrac-
tive as it is based on the supposition of microscopic deformations and rotations and includes the concepts of asym-
metric stress and a couple stress tensor, both of which act to balance angular or rotational momentum in a body.
Such concepts would seemingly be vital when defining volumes associated with continuum material points of arbitrary
size and shape for a material governed by directional bonding between atoms. (This point is further addressed in
Appendix A.)

In this section, we apply our material frame version of the Hardy formulation to the set of balance laws for a micromor-
phic continuum. The choice of a material frame analysis is not happenstance; indeed, the authors have attempted to perform
a spatial frame analysis consistent with the original formulation by Hardy. However, this analysis is not trivial as an incon-
sistency exists between the notion of a fixed spatial point x from the Hardy formulation with the material point �x of Erin-
gen’s theory. In micromorphic theory, �x represents the center of mass of a ‘‘microvolume” or ‘‘microelement” at the current
state of deformation. However, Hardy’s analysis requires that x represent a fixed spatial point. Combining the two formula-
tions requires the introduction of additional terms to account for the offset of the center of mass from the spatial point x. We
have thus far been unable to define a unambiguous set of balance laws that includes such additional variables. Eringen’s ori-
ginal derivation for balance laws in the material frame, as shown in [42], does include such variables. For a material frame
analysis (as presented in Section 2), this inclusion is unnecessary: a set of material points X can be selected that satisfy the
center of mass requirement and these points remain fixed over time in the reference configuration. This statement is not true
for spatial points that coincide with the material points when the system occupies the reference configuration as, at a later
time, they will no longer represent mass centers.

Before proceeding, we note that Chen and Lee previously performed an analysis to connect atomistic quantities to micro-
morphic theory [44,45]. In their work, they consider both instantaneous and time-averaged forms of thermomechanical vari-
ables and the consistency of these variables with the balance laws for a micromorphic continuum. However, their analysis
was performed using a mixture of material and spatial frames as they use the spatial forms of the balance laws and consider
current positions of microelements but define quantities relative to fixed sets of atoms associated with each microelement.
In addition, they use the original form of Eringen’s theory without consideration of the mass center issue discussed above.
Our work will involve manipulation of the material frame versions of the balance laws, thereby avoiding this inconsistency.
It is worth noting that Zhou and McDowell considered a similar ‘‘equivalent continuum” analysis for a micropolar continuum
[13] (a continuum with microelements that undergo rigid rotations only), but proceeded in an entirely different manner than
we do or that Chen and Lee have. Also, Murdoch has performed an analysis in which he defined a couple stress tensor that
satisfies a moment of momentum balance [15]. It will be seen that our expression for couple stress contains significant dif-
ferences as compared to Murdoch’s expression, and that, unlike Murdoch, we consider the full set of micromorphic balance
laws as established by Eringen.

4.1. Balance laws

The material frame balance laws for a micromorphic continuum, as derived by Eringen in [42], are as follows:
dq0

dt
¼ 0 ð61Þ

q0
dI
dt
¼ 0 ð62Þ

q0
dv
dt
¼ rX � Pþ q0b ð63Þ

q0
d2

v

dt2 � I ¼ rX �Mþ P� Pþ q0c ð64Þ

q0
d�
dt
¼ P :

dF
dt
þM : rX

dv

dt

� �
þ ðP� PÞ :

dv

dt
�rX � Q þ q0h ð65Þ
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where I is the micro-inertia tensor, v is the micro-deformation gradient, and M is the couple stress tensor.8 The stress P is a
quantity related to P in the sense that the latter is considered by Eringen to be a surface averaged limit of a traction while the
former is a volume averaged limit of that same traction (for a more precise explanation, the reader is referred to Ref. [42]). We
note that the total energy contains contributions from internal energy, continuum translational kinetic energy and continuum
micro-rotational kinetic energy: e ¼ �þ 1

2 v2 þ 1
2 I : dv

dt

T � dv

dt

� 	
.9 These equations appear in a more generalized form in [42]; how-

ever, to simplify our analysis we have made the assumption of Cartesian coordinates (instead of curvilinear coordinates) and do
not separate out intrinsic surface energy density. We also assume that the material points X coincide with the centers of mass of
the localization volumes they are associated with, as in (39). Hence,
8 As t
9 NotP3
i¼1
P

10 Rec
X ¼ 1
q0ðXÞ

XN

a¼1

maXawðXa � XÞ ¼
PN

a¼1maXawðXa � XÞPN
a¼1mawðXa � XÞ

: ð66Þ
The consequences of this assumption were mentioned earlier in this paper.

4.2. Densities

The expressions for q0;p0 and q0e defined in Eqs. (10)–(12), respectively, are reused for the micromorphic formulation. In
addition, we define the following expression for micro-inertia tensor I:
q0IðXÞ ¼
XN

a¼1

maNa � NawðXa � XÞ ð67Þ
In this expression, Na � Xa � X using Eringen’s notation.10 We also note that micro-inertia is the second moment of mass for
the localization volume centered at X (using relative position vectors Na), while mass density is the zeroth moment. Eq. (66) can
be used to show that the first moment of mass is, in-fact, zero:
XN

a¼1
maNawðXa � XÞ ¼

XN

a¼1

maðXa � XÞwðXa � XÞ ¼
XN

a¼1

maXawðXa � XÞ �
XN

a¼1

maXwðXa � XÞ

¼ q0X� X
XN

a¼1

mawðXa � XÞ
 !

¼ q0X� q0X ¼ 0
We also define a micro-rotational momentum tensor !,
q0!ðX; tÞ ¼
XN

a¼1

mava � NawðXa � XÞ: ð68Þ
As for standard continuum theory, there are several interesting aspects of this expression. Consistency between equations
(64) and (68) requires that ! ¼ dv

dt � I. This makes sense; just as we earlier defined a continuum velocity field as the product
of linear momentum density and the inverse of the mass density, now we define a ‘‘micro-deformational velocity tensor” (dv

dt)
as the product of micro-rotational momentum tensor and the inverse of the micro-inertia tensor:
dv

dt
ðX; tÞ ¼ ðq0!Þ � ðq0IÞ�1 ¼

XN

a¼1

mava � NawðXa � XÞ
 !

�
XN

a¼1

maNa � NawðXa � XÞ
 !�1

: ð69Þ
We also note that since the only time-dependent quantities in the above expression are the individual atomic velocities, we
can integrate the expression to obtain the micro-deformation gradient,
vðX; tÞ ¼
XN

a¼1

maxa � NawðXa � XÞ
 !

�
XN

a¼1

maNa � NawðXa � XÞ
 !�1

: ð70Þ
Using the expression Xa ¼ Xþ Na with Eq. (66), we notice that v! 1 in the limit of zero deformation. We can use (69) and
(70) to estimate the micro-gyration tensor defined by Eringen,
m � dv

dt
� v�1 ¼

XN

a¼1

mava � NawðXa � XÞ
 !

�
XN

a¼1

maxa � NawðXa � XÞ
 !�1

: ð71Þ
Comparison of this expression with the expression by Chen and Lee [44] shows that our formulation, while similar, does dis-
play significant differences.
he couple stress is a third order tensor, the divergence operator is taken to act on the outermost index of M, i.e. rX �M ¼ MiJK;K .
e that in Eq. (65), the notation A : B represents the quantity

P3
i¼1
P3

J¼1AiJBiJ when A and B are second order tensors and the quantity
3
J¼1
P3

K¼1AiJK BiJK when A and B are third order tensors.
all that this same definition was used in (39).
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4.3. Derivation of continuum expressions

4.3.1. Balance of mass and micro-inertia
As before, inspection of Eq. (10) reveals that dq0

dt ¼ 0. Similarly, we notice that the expression for micro-inertia given in Eq.
(67) contains no atomic variables that are time-dependent. Hence,
q0
dI
dt
¼ dðq0IÞ

dt
¼ 0:
4.3.2. Balance of linear momentum
We choose not to repeat the derivation shown in Section 2.4.2, but merely refer to our derived expressions for the 1st

Piola–Kirchhoff stress tensor in Eq. (30),
PðX; tÞ ¼ �1
2

XN

a¼1

XN

b–a

fab � XabBabðXÞ;
and the body force vector in Eq. (31),
bðX; tÞ ¼
PN

a¼1mabawðXa � XÞPN
a¼1mawðXa � XÞ

:

We note that in this derivation it was not necessary to define the quantity fab, but merely acknowledge the relations
fa ¼

PN
b–afab and fba ¼ �fab. We will address the specific form of fab in a later section.

4.3.3. Balance of rotational momentum
We start with the expression for micro-rotational momentum given in (68) and take its time derivative:
q0
d2

v

dt2 � I ¼
d
dt

q
dv

dt
� I

� �
¼ d

dt
ðq0!Þ ¼

d
dt

XN

a¼1

mava � NawðXa � XÞ
 !

¼
XN

a¼1

ma dva

dt
� NawðXa � XÞ

¼
XN

a¼1

ðfa þmabaÞ � NawðXa � XÞ
By using the relation fa ¼
PN

b–afab and acknowledging that a and b are dummy indices, one obtains:
q0
d2

v

dt2 � I ¼
1
2

XN

a¼1

XN

b–a

fab � ðNawðXa � XÞ � NbwðXb � XÞÞ þ
XN

a¼1

maba � NawðXa � XÞ ð72Þ
In order to use the relationship shown in Eq. (23), we rearrange the first term on the RHS of (72) (labeled RHS1 for conve-
nience) into the following expression:
RHS1 ¼
1
2

XN

a¼1

XN

b–a

fab � ðXawðXa � XÞ � XbwðXb � XÞ � X½wðXa � XÞ � wðXb � XÞ�Þ
This can now be simplified to
RHS1 ¼
XN

a¼1

XN

b–a
fab � XawðXa � XÞ þ 1

2

XN

a¼1

XN

b–a
fab � X� Xab � rXBabðXÞ:
We then use the chain rule to bring the divergence operator to the outside of the second term. Hence,
q0
d2

v

dt2 � I ¼
XN

a¼1

XN

b–a

fab � XawðXa � XÞ þ rX �
1
2

XN

a¼1

XN

b–a

fab � X� XabBabðXÞ
 !

� 1
2

XN

a¼1

XN

b–a

fab � XabBabðXÞ

þ
XN

a¼1

maba � NawðXa � XÞ: ð73Þ
At this point, we note that the third term on the RHS is none other than P. Also, the first two terms on the RHS of Eq. (73)
appear to lack frame invariance, i.e. the value of these terms will depend on the material frame coordinate origin. In order to
correct this, we add (to the first term) and subtract (from the second term) the quantity
rX �
1
2

XN

a¼1

XN

b–a

fab � Xa � XabBabðXÞ
 !

;

and again use the relation in Eq. (23). This simplifies Eq. (73) to
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q0
d2

v

dt2 � I ¼
1
2

XN

a¼1

XN

b–a

fab � XaðwðXa � XÞ þ wðXb � XÞÞ þ rX � �
1
2

XN

a¼1

XN

b–a

fab � Na � XabBabðXÞ
 !

þ P

þ
XN

a¼1

maba � NawðXa � XÞ:
Finally, by separating the first term on the RHS into two separate terms, switching dummy indices a and b and using the
relation fba ¼ �fab, we arrive at
q0
d2

v

dt2 � I ¼
1
2

XN

a¼1

XN

b–a
fab � XabwðXa � XÞ þ rX � �

1
2

XN

a¼1

XN

b–a
fab � Na � XabBabðXÞ

 !
þ Pþ

XN

a¼1

maba � NawðXa � XÞ:

ð74Þ
Comparing Eq. (74) with (64), we identify the expressions for couple stress,
MðX; tÞ ¼ �1
2

XN

a¼1

XN

b–a

fab � Na � XabBabðXÞ; ð75Þ
for P,
PðX; tÞ ¼ �1
2

XN

a¼1

XN

b–a
fab � XabwðXa � XÞ; ð76Þ
and for the body couple,
cðX; tÞ ¼ 1
q0ðXÞ

XN

a¼1

maba � NawðXa � XÞ ¼
PN

a¼1maba � NawðXa � XÞPN
a¼1mawðXa � XÞ

ð77Þ
Before proceeding to the next section, we again point out that, with regard to the inter-atomic forces, we have only used the
relations fa ¼

PN
b–afab and fba ¼ �fab. We have not yet specified a form for the quantity fab.

4.3.4. Balance of energy
As before, we begin with Hardy’s expression for the system energy (12),
q0
de
dt
¼ dðq0eÞ

dt
¼ d

dt

XN

a¼1

1
2

maðvaÞ2 þ /a
� �

wðXa � XÞ
( )

¼
XN

a¼1

ma dva

dt
� va

� �
þ d/a

dt

� �
wðXa � XÞ

¼
XN

a¼1

ðfa þmabaÞ � va þ d/a

dt

� �
wðXa � XÞ ¼

XN

a¼1

fa � va þ d/a

dt

� �
wðXa � XÞ þ

XN

a¼1

maba � vawðXa � XÞ:
Using Hardy’s second assumption, fa ¼
PN

g¼1fag, this can be also written as
q0
de
dt
¼
XN

a¼1

XN

g–a
fag � va þ d/a

dt

( )
wðXa � XÞ þ

XN

a¼1

maba � vawðXa � XÞ: ð78Þ
In order to simplify the expression above, we must (as did Hardy) provide a relationship between the inter-atomic
force fag and the atomic potential energies /a and /g. Earlier, we noted that Hardy’s third and fourth assumptions com-
bined are only valid for pair and central force (e.g. EAM) potentials and not for potentials representative of directional
bonding such as the Stillinger–Weber potential. Here, we substitute a new third assumption: each atom’s potential en-
ergy depends only on the vectors that connect the atom under consideration to all other atoms. Hence,
/a ¼ /aðxab; xac; . . . ;xaNÞ. We acknowledge that this form of /a is not invariant with respect to orientation of the coor-
dinate system origin. (It is invariant with respect to translation.)11The actual form of /a is based on invariant arguments
such as the angle between three neighboring atoms hbc

a which we express here in terms of relative position vectors, i.e.
hbc
a ¼ xba �xca

kxbakjxcak, for convenience in the subsequent mathematical developments. Using this new relation, the force between
atoms a and g can be defined as
fag ¼ � @/a

@xag þ
@/g

@xag

� �
; ð79Þ
our new fourth assumption.
endix A of Ref. [16], discusses the fact that the system potential energy U must depend on its configuration through invariant quantities such as bond
, angles between bonds involving common atoms, areas and volumes.
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Inserting Eq. (79) into the first term on the RHS of (78), this term ðRHS1Þ becomes the following:
RHS1 ¼
XN

a¼1

�
XN

g–a

@/a

@xag þ
@/g

@xag

� �
� va þ d/a

dt

( )
wðXa � XÞ ¼

XN

a¼1

�
XN

g–a

@/a

@xag þ
@/g

@xag

� �
� va þ

XN

g–a

@/a

@xag � v
ag

( )
wðXa � XÞ

¼
XN

a¼1

XN

g–a
� @/a

@xag � v
a � @/g

@xag � v
a þ @/a

@xag � v
a � @/a

@xag � v
g

� �
wðXa � XÞ

¼
XN

a¼1

XN

g–a
� @/g

@xag � v
a � @/a

@xag � v
g

� �
wðXa � XÞ ¼ �

XN

a¼1

XN

g–a

@/g

@xag � v
awðXa � XÞ �

XN

a¼1

XN

g–a

@/a

@xag � v
gwðXa � XÞ
We now switch dummy indices on the right term of the above expression (i.e. a$ g) and use the relation xga ¼ �xag to obtain
RHS1 ¼ �
XN

a¼1

XN

g–a

@/g

@xag � v
aðwðXa � XÞ � wðXg � XÞÞ: ð80Þ
Combining this result with Eqs. (23) and (78), we arrive at
q0
de
dt
¼
XN

a¼1

XN

g–a

@/g

@xag � v
a

� �
ðXag � rXBagðXÞÞ þ

XN

a¼1

maba � vawðXa � XÞ: ð81Þ
As before, this can be modified to
q0
de
dt
¼ rX �

XN

a¼1

XN

g–a

@/g

@xag � v
a

� �
XagBagðXÞ

 !
þ
XN

a¼1

maba � vawðXa � XÞ: ð82Þ
Similar to our material frame analysis of the balance of energy for standard continuum theory, we separate atomic motion
from continuum motion by splitting the atomic velocities va. However, for a micromorphic continuum, this velocity becomes
the sum of three terms,
va ¼ vðX; tÞ þ dv

dt
ðX; tÞ � Na þwaðX; tÞ; ð83Þ
where dv

dt ðX; tÞ � N
a now represents a continuum velocity associated with the microscale rotation and deformation of the

microelement containing atom a. Substitution of this expression into (82), along with the aforementioned relation
e ¼ �þ 1

2 v2 þ 1
2 I : dv

dt

T � dv

dt

� 	
, results in the following upon simplification:
q0
d�
dt
þ q0

dv
dt
� v þ q0

d2
v

dt2 � I
 !

:
dv

dt

¼ rX � v �
XN

a¼1

XN

g–a

@/g

@xag � XagBagðXÞ
( ) !

þrX �
dv

dt
:
XN

a¼1

XN

g–a

@/g

@xag � Na � XagBagðXÞ
( ) !

þrX �
XN

a¼1

XN

g–a

@/g

@xag �w
a

� �
XagBagðXÞ

 !
þ q0b � v þ dv

dt
:
XN

a¼1

maba � NawðXa � XÞ
 !

þ
XN

a¼1

maba �wawðXa � XÞ ð84Þ
Eq. (84) can be further simplified in two ways. On the LHS, the expressions q0
dv
dt and q0

d2
v

dt2 � I are replaced using the bal-
ance of linear and rotational momentum equations shown in Eqs. (63) and (64), respectively. On the RHS, we can relate each
divergence term to a corresponding continuum quantity. By using our new expression for inter-atomic forces defined in Eq.
(79), we notice that the 1st Piola–Kirchhoff stress P is
P ¼ �1
2

XN

a¼1

XN

g–a
fag � XagBagðXÞ ¼ 1

2

XN

a¼1

XN

g–a

@/a

@xag þ
@/g

@xag

� �
� XagBagðXÞ

¼ 1
2

XN

a¼1

XN

g–a

@/a

@xag � XagBagðXÞ þ
XN

a¼1

XN

g–a

@/g

@xag � XagBagðXÞ
( )

¼ 1
2

XN

g¼1

XN

a–g

@/g

@xga � XgaBgaðXÞ þ
XN

a¼1

XN

g–a

@/g

@xag � XagBagðXÞ
( )

¼ 1
2

XN

a¼1

XN

g–a

@/g

@xag � XagBagðXÞ þ
XN

a¼1

XN

g–a

@/g

@xag � XagBagðXÞ
( )

¼
XN

a¼1

XN

g–a

@/g

@xag � XagBagðXÞ:
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[46, Chapter 4 and Appendix I in Chapter 6] and the articles by Andia and colleagues [22–25]. As mentioned earlier, Andia
et al. define an expression for P–K stress as a cell averaged quantity. Our expression is defined at a single material point and
depends only on the size of the volume associated with that point in the sense that a minimum volume must be used to show
consistency with expected continuum behavior. Additionally, both Andia et al. and Weiner make the distinction between
internal and external forces, separating the interactions between atoms within the cell and the interactions between atoms
with ‘‘ghost” atoms located across the periodic boundaries. This distinction is not needed for our approach.

The analyses presented in the Evaluation section clearly show that our derived expression for P–K stress is a full thermo-
mechanical measure of stress despite the fact that it contains only a potential and not a kinetic term, unlike the Cauchy stress
expression derived by Hardy. Our analysis also shows that our expression for P is consistent with Cauchy stress via the Piola
transformation r ¼ 1

J P � FT . While, in the special case of a system average, Weiner’s expression [46, Eq. A44] is equivalent to
our expression for P (30), we have gone one step further and made a strong connection between (30) and the expressions for
Cauchy stress (34) and the virial.

In order to show the consistency of our expression with continuum thermodynamics, we chose our material configuration
to be the zero temperature, undeformed state of the system simulated. Unlike conventional continuum mechanics where the
choice of reference configuration and temperature is arbitrary, the selection of a zero temperature state as the reference con-
figuration is mandatory for our formulation. This requirement was discussed by Weiner [46, Chapter 4], who noted that for
the case of anharmonic pair potentials, a zero value of P–K stress is achieved only at zero temperature. This can be more
easily understood by examining our expression for P–K stress,
P ¼ �1
2

XN

a¼1

XN

b–a
fab � XabBabðXÞ;
and comparing it with the expression derived by Hardy for Cauchy stress,
r ¼ �1
2

XN

a¼1

XN

b–a

fab � xabeBabðxÞ �
XN

a¼1

mawa �wa ~wðxa � xÞ:
Here, we see that if we select the given current configuration to represent our material frame, the first term on the right-
hand side of the Cauchy expression will exactly equal the full value of the P–K expression. However, this term will not equal
zero for any system that has been equilibrated to a non-zero temperature. For that case, it is apparent that the second term
on the right-hand side will be equal to a non-zero value. Ergo, the P–K and Cauchy stresses will differ by exactly this amount
and the expected relationship between P–K and Cauchy stresses will not hold.

Although our continuum formulations are distinctly different from the works by Delph [38] and Chen [39] due to our use
of a material frame basis, it is interesting to notice that our formulations offers two advantages. First, unlike in Delph’s der-
ivation, our stress expression appears in both the linear momentum and energy balance laws without modification. Second,
unlike the work by Chen, the balance laws our expressions satisfy are the same as from micromorphic continuum theory; no
specialized ‘‘microscale balance laws” need to be postulated.

Our formulation, as applied to micromorphic theory, yields an expression for the couple stress tensor M, Eq. (75). As cou-
ple stress has dimensions of stress times length, it is reasonable to ask if there is a characteristic length. The terms present in
this expression include fab

;BabðXÞ;Na, and Xab. The first of these, fab, is non-zero only for distances less than or equal to the
cut-off distance of the inter-atomic potential used in the simulation. By comparison, BabðXÞ is non-zero over a region corre-
sponding to the localization volume. The two remaining terms, Na and Xab, have no intrinsic length scale connected with
them, as they span distances ranging from zero to the system size. Given the fact that both fab and BabðXÞ go to zero outside
their respective ranges, it is clear that the shorter of the two distances, i.e. the potential’s cut-off distance or localization vol-
ume’s size, constitutes an appropriate characteristic length. In most instances, the volume size is larger than the cut-off dis-
tance (a recommendation made in [16] for producing smooth continuum fields), and hence the latter defines the length scale
for this microcontinuum.

Finally, in order to relate the material frame variables defined here to their spatial frame counterparts, it is necessary to
define kinematic deformation variables such as the deformation gradient. It is interesting to note that few of the aforemen-
tioned articles establish such field variables. However, in Eq. (15) we define a displacement field u consistent with the same
localization function and volumes used to define the thermodynamic variables. This field could easily be used to construct a
locally-varying deformation gradient expression. Also, in Eqs. (70) and (71) we derived expressions for the micro-deforma-
tion gradient v and micro-gyration tensor m, respectively, the kinematic variables inherent to micromorphic continuum the-
ory. It is interesting to note that if the relationship xa ¼ xþ na is applied to Eq. (70), where na is the spatial frame counterpart
to Na, then it can also be shown that
vðX; tÞ ¼
XN

a¼1

mana � NawðXa � XÞ
 !

�
XN

a¼1

maNa � NawðXa � XÞ
 !�1

: ð90Þ
This expression for micro-deformation gradient bears a strong resemblance to the expressions developed by both Horste-
meyer et al. [47–49] and Zimmerman et al. [50,51] to define an atomic-scale deformation gradient. Detailed comparisons
between our micro-deformation gradient and the atomic-scale equivalent defined in these works is deferred for future work.
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Appendix A

It can be shown that inter-atomic potentials representative of directional bonding will result in a non-symmetric Cauchy
stress. To accomplish this, we use the ‘‘potential” portion of the Hardy expression, r ¼ � 1

2

PN
a¼1

PN
b–afab � xabeBabðxÞ, com-

bined with our new expression for fab ¼ �f @/a

@xab þ @/b

@xabg. As a simple case, we consider the interaction of only 3 atoms (a, b
and d) through a single 3-body potential energy term U,
U ¼ Uðxab;xadÞ: ðA:1Þ
This form fits the case of the 3-body term in the Stillinger–Weber potential [30] where a is the center atom of the
b� a� d triplet and
Uðxab;xadÞ ¼ ek exp
c

xab

r � a

 !
exp

c
xac

r � a

 !
cosðhÞ þ 1

3

� �2

; ðA:2Þ
where e; k; c;r and a are fitted material parameters and
h � arccos
xab � xad

xabxad

� �
: ðA:3Þ
Using the relation /a ¼ /aðxab; xac; . . . ;xaNÞ, the full energy U is partitioned equally among the 3 atoms,
/a ¼ /b ¼ /d ¼ 1

3 U. However, in order to correctly take partial derivatives of these individual energies, we must express
the functional dependency for each energy correctly. For atom a, the expression is trivial,
/a ¼ 1
3

Uðxab; xadÞ; ðA:4Þ
but for atoms b and d, the expressions are
/b ¼ /bðxba;xbdÞ ¼ 1
3

Uðxab; xab þ xbdÞ ðA:5Þ

/d ¼ /dðxda;xdbÞ ¼ 1
3

Uðxad þ xdb; xadÞ ðA:6Þ
In these relations, we have substituted xab þ xbd for xad in the expression for /b since it cannot depend directly on xad.
Likewise for the /d term, we have substituted xad þ xdb for xab. Obviously, clarity requires that any expression that uses U
in a simple way must refer to its original form shown in (A.1). So, when partial derivatives are taken, they must include terms
that may indirectly depend on certain variables. For example,
@/b

@xab
¼ 1

3
@U
@xab

þ @U
@xad

@xad

@xab

� �
¼ 1

3
@U
@xab

þ @U
@xad

� �
: ðA:7Þ
Eq. (A.7) is easily understood. The first term inside the parentheses results from the derivative of U with respect to xab as
it appears explicitly within the normal functional form of U, but the second term is present because U also depends on xad,
which itself depends on xab through the relation xad ¼ xab þ xbd. Since
@/a

@xab
¼ 1

3
@U
@xab

� �
; ðA:8Þ
we can now calculate fab to be
fab ¼ � @/a

@xab
þ @/b

@xab

� �
¼ � 1

3
@U
@xab

� �
þ 1

3
@U
@xab

þ @U
@xad

� �� �
¼ � 2

3
@U
@xab

þ 1
3
@U
@xad

� �
: ðA:9Þ
Similarly, for this example
fad ¼ � 2
3
@U
@xad

þ 1
3
@U
@xab

� �
; ðA:10Þ
It is interesting to note that the expression for fab in (A.9) involves derivatives with respect to inter-atomic vectors other
than just xab, and that it is not necessarily collinear with xab.
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Combining the expressions in Eqs. (A.9) and (A.10) with a similarly derived expression for fbd, the expression for Cauchy
stress becomes:
rðx; tÞ ¼ �1
2

XN

a¼1

XN

b–a

xab � fabeBabðxÞ ¼ �xab � fabeBabðxÞ � xad � fadeBadðxÞ � xbd � fbdeBbdðxÞ

¼ xab � 2
3
@U
@xab

þ 1
3
@U
@xad

� �eBabðxÞ þ xad � 1
3
@U
@xab

þ 2
3
@U
@xad

� �eBadðxÞ þ xbd � �1
3
@U
@xab

þ 1
3
@U
@xad

� �eBbdðxÞ; ðA:11Þ
which can be simplified to
rðx; tÞ ¼ xab � 2
3
@U
@xab

þ 1
3
@U
@xad

� �eBabðxÞ þ xad � 1
3
@U
@xab

þ 2
3
@U
@xad

� �eBadðxÞ þ xad � xab

 �

� �1
3
@U
@xab

þ 1
3
@U
@xad

� �eBbdðxÞ: ðA:12Þ
To proceed further, we assume that the potential function U can be expressed an an alternative function ~U that depends
only on the invariants xab; xad and h (as defined in Eq. (A.3)):
U ¼ Uðxab;xadÞ ¼ ~Uðxab; xad; cos hÞ: ðA:13Þ
This assumption is certainly true for the Stillinger–Weber 3-body term (A.2) and can be generalized for other potentials
representative of directional bonding. Using (A.13), we obtain the relations
@U
@xab

¼ @ ~U
@xab

xab

xab
þ @

~U
@ch

xad

xabxad
� ch

xab

xab

xab

� 

@U
@xad

¼ @ ~U
@xad

xad

xad
þ @

~U
@ch

xab

xabxad
� ch

xad

xad

xad

� 

;

ðA:14Þ
where ch represents cos h. Substituting the above relations into Eq. (A.12), we clearly see that the expression for rðx; tÞ will
contain many terms that are non-symmetric. Specifically, the quantities xab � xad and xad � xab will both be present but will
not have the same scalar coefficient, a requirement for a symmetric tensor.

One result we can obtain is the expression for the average stress, �rðtÞ, for the entire volume V of the system. Integrating
both sides of Eq. (A.12), we obtain
�rðtÞ ¼ 1
V

xab � 2
3
@U
@xab

þ 1
3
@U
@xad

� �
þ xad � 1

3
@U
@xab

þ 2
3
@U
@xad

� �
þ xad � xab

 �

� �1
3
@U
@xab

þ 1
3
@U
@xad

� �� �
¼ 1

V
xab � @U

@xab
þ xad � @U

@xad

� �
ðA:15Þ
Substitution of (A.14) into (A.15), along with simplification of terms, results in the expression
�rðtÞ ¼ 1
V

@ ~U
@xab

� @
~U

@ch

ch

xab

" #
xab � xab

xab
þ @ ~U

@xad
� @

~U
@ch

ch

xad

" #
xad � xad

xad
þ @

~U
@ch

xab � xad þ xad � xabf g
xabxad

 !
: ðA:16Þ
Clearly, the average stress for the system is a symmetric quantity. This explains why standard continuum theory ade-
quately describes the deformation of directional bonded materials such as silicon. At the macroscopic scale, asymmetries
in stress are probably minor and unnoticeable. However, at the microscopic scale, these asymmetries may be significant
and indicative of the need for a microcontinuum theory.
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